Косметология. Прически и макияж. Маникюр и педикюр. Фитнес

Закон изменения и сохранения полной механической энергии. Школьная энциклопедия

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называют полной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Билет 11

Выражение кинетического момента тела с одной неподвижной точкой через матрицу моментов инерции тела.

Имеет твердое тело, одна из точек которого закреплена. Движение тела рассматривается относительно некоторой системы координат О xyz .

Кинетически момент относительно неподвижной точки:

Где r k - радиус-вектор какой-либо точки тела. m k -масса точки. V k - скорость этой точки относительно выбранной системы отсчета.

формула эйлера

В проекциях на оси:

Для проекции кинетического момента на ось O x с учетом(2’) имеем:

Суммы в (1’) представляют собой соответственно осевой и центробежные моменты инерции. Получаем:

По (3)вычисляются проекции на оси координат кинетического момента тела относительно его закрепленной точки. Кинетический момент по проекциям определяется по формуле:

Для неподвижных осей осевые и центробежные моменты инерции изменяются при вращении тела и, следовательно, зависят от времени вследствие изменения положения тела относительно этих осей.

Если применить тензор инерции:

И учесть правило умножения тензора на вектор столбец омега, то можно кратко выразить формулой: .

Упрощаем формулу (3)для проекций:

В этом случае проекции кинетического момента вычисляются так же, как и в случае, если бы каждая из главных осей инерции была неподвижной осью вращения тела. Главные оси инерции для неподвижной точки О обычно подвижные оси, скрепленные с самим вращающимся телом. Только такие оси могут быть главными в течении всего времени вращения тела. Другие подвижные или неподвижные оси могут быть главными только в отдельные моменты времени.

Кинетическая энергия поступательного движения

Кинетической энергией системы называется скалярная величина Т, равная арифметиче­ской сумме кинетических энергий всех точек системы

Кинетическая энергия является характеристикой и поступатель­ного и вращательного движения системы, поэтому теоремой об изме­нении кинетической энергии особенно часто пользуются при решении задач.

Если система состоит из нескольких тел, то ее кинетическая энергия равна, очевидно, сумме кинетических энергий этих тел:

Кинетическая энергия – скалярная и всегда положительная величина.

Найдем формулы для вычисления кинетической энергии тела в разных случаях движения.

1. Поступательное движение . В этом случае все точки тела движутся с одинаковыми скоростями, равными скорости дви­жения центра масс. То есть, для любой точки

Таким образом, кинетическая энергия тела при поступатель­ном движении равна половине произведения массы тела на квад­рат скорости центра масс. От направления движения значение Т не зависит.

Билет 12

Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси

Дифференциальное уравнение имеет вид:

, (2.6)

где – угловое ускорение тела.

Уравнение (2.6) получается из уравнения (2.4) теоремы путём подстановки в него формулы (2.3).

(2.3)

(2.4)

Интегрируя уравнение (2.6), можно определить закон вращения тела. Методика решения подобных задач:

– изображаем тело в произвольном положении; показываем внешние силы, действующие на тело; показываем ось , направленную по оси вращения тела в ту сторону, откуда вращение видно происходящим против часовой стрелки;

– находим сумму моментов внешних сил относительно оси ;

– вычисляем, если не задан, момент инерции тела ;

– составляем уравнение (2.6), интегрируя это уравнение, определяем закон вращения тела.

ПОТЕНЦИАЛЬНЫЕ СИЛЫ

Поле сил, остающееся постоянным во времени, называется стационарным. В стационарном силовом поле сила, действующая на частицу, зависит только от ее положения. Работа, которую совершают силы поля при перемещении частицы из точки 1 в точку 2, зависит, вообще говоря, от траектории, по которой перемещается частица из начального положения в конечное. Вместе с тем, имеются стационарные силовые поля, в которых работа, совершаемая над частицами силами поля, не зависит от формы траектории между точками 1 и 2. Силы, обладающие таким свойством, называются потенциальными или консервативными, а соответствующее поле сил – потенциальным полем. Примером потенциальных сил являются упругие силы, сила тяжести.

билет 13 1.Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П. Рассмотрим сечение тела какой-нибудь плоскостью OXY, параллельной неподвижной плоскости П (рис.1).При плоскопараллельном движении все точки тела, лежащие на прямой , перпендикулярной к сечению, т.е. к плоскости П, движутся тождественно. Поэтому для изучения движения всего тела достаточно изучить, как движется сечение тела в плоскости OXY. В дальнейшем будем плоскость OXY совмещать с плоскостью рисунка, а вместо всего тела изображать только его сечение. Положение сечения в плоскости OXY определяется положением какого-нибудь проведенного в этом сечении отрезка АВ (рис.2). Положение отрезка АВ можно определить, зная координаты точки А и угол , который от-резок АВ образует с осью x. Точку А, выбранную для определения положения сечения, называют полюсом. При движении тела величины и будут меняться: (1.74) Уравнения определяющие закон происходящего движения, называются уравнениями плоскопараллельного движения твердого тела. 2.Главный момент всех внутренних сил системы(относительно всякого выбранного центра) в любой момент времени равен нулю (M O i =0).M-вектор. или . Уравновешенными внутренние силы будут тогда, когда рассматриваемая система представляет собою абсолютно твердое тело. Действительно, если взять произвольный центр О , то из рис. видно, что . билет 14 1.Кинетической энергией системы называют сумму кинетических энергий всех материальных точек, входящих в систему; при поступательном движении: E=mV 2 /2; при вращении вокруг неподвижной оси : E=I Z v 2 /2; при плоскопараллельном движении : E=mV C 2 /2-I Z v 2 /2, где V C -скорость центра масс,v-угловая скорость. Кинетическая энергия механической системы есть энергия движения центра масс плюс энергия движения относительно центра масс: E=E 0 +E R , где E-полная кинетическая энергия системы, E 0- кинетическая энергия движения центра масс, E R -относительная кинетическая энергия системы. Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы в её сферическом движении относительно центра масс. 2.Степени свободы - это совокупность независимых координат перемещения и/или вращения, полностью определяющая положение системы или тела (а вместе с их производными по времени - соответствующими скоростями - полностью определяющая состояние механической системы или тела - то есть их положение и движение). Обобщенными координатами (о.к.) системы называют такие величины, которые обобщают несколько независимых декартовых координат в углы, линейные расстояния, площади. Удобство состоит в том, что о.к. можно выбирать с учетом наложенных связей, т.е. сообразуясь с характером движения, допускаемого для системы всей совокупностью наложенных связей.

Билет

1) Для внутренних сил механической системы имеет место свойство: главный вектор и главный момент внутренних сил механической системы равны нулю.

.

Это следует из того, что внутренние силы есть силы взаимодействия между точками системы, которые попарно равны и направлены в противоположные стороны.

2) Если все силы системы потенциальны, то обобщенные силы системы выражаются через потенциальную энергию системы как Q j = -дП / дq j , а уравнения Лагранжа второго рода запишутся в виде

Так как потенциальная энергия не зависит от обобщенных скоростей, то. Введем в рассмотрение функцию

Билет 16.

1. Tеорема об изменении кинетической энергии механической системы в дифференциальной форме

Изменение кинетической энергии механической системы на некотором ее перемещении равно сумме работ внешних и внутренних сил, приложенных к точкам системы, на том же перемещении.

2. Удерживающие и стационарные связи

Если функция зависит явно от времени, то говорят, что связь - нестационарная или реономная ; если же эта функция не зависит явно от времени, то говорят, что эта связь -стационарная или склерономная .

Если связь задаётся равенством, то говорят, что такая связь - удерживающая или двусторонняя :

Билет 17

1 Tеорема об изменении кинетической энергии механической системы

Кинетической энергией системы называют сумму кинетических энергий всех тел, входящих в систему. Для определённой таким образом величины справедливо утверждение:

Изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.

2 Голономные связи

Голоно́мная связь - механическая связь, налагающая ограничения только на положения (или перемещения) точек и тел системы.

Математически выражается в виде равенства:

Билет 18

1.Принцип Эйлера-Даламбера для материальной точки

Согласно данному принципу, для каждой i-той точки системы верно равенство , где - действующая на эту точку активная сила, - реакция наложенной на точку связи, - сила инерции, численно равная произведению массы точки на её ускорение и направленная противоположно этому ускорению ()

2 кинетическая энергия тела при плоском движении

Билет 19

Уравнения кинетостатики.

Кинетостатика - раздел механики, в котором рассматриваются способы решения динамических задач с помощью аналитических или графических методов статики. В основе К. лежит Д"Аламбера принцип, согласно которому уравнения движения тел можно составлять в форме уравнений статики, если к фактически действующим на тело силам и реакциям связей присоединить силы инерции. Методы К. находят применение при решении ряда динамических задач, особенно в динамике машин и механизмов.

уравнения кинетостатики для материальной точки :

где F, R, Ф - главные векторы активных сил, реакций связей и сил инерции;

Fz, Rz, Ф z - главные моменты активных сил, реакций связей и сил инерции относительно точки О 1

Закон сохранения механической энергии связывает между собой разные виды энергии, рассмотрим их подробнее. Выясним и возможности его практического применения.

Особенности физической системы

Математическая формулировка закона сохранения механической энергии связывает кинетическую и потенциальную энергию.

Суть закона заключается в том, что допускается превращение одной формы в иной вид, при этом суммарное значение остается неизменной величиной. В разных разделах физики есть свои формулировки данного закона. Например, в термодинамике выделяют первое начало, в классической механике используют закон сохранения, а в электродинамике расчеты проводят на основе теоремы Пойнтинга.

Фундаментальный смысл

Как определяется механическая энергия? Закон сохранения механической энергии объясняют теоремой Нетер. Она объясняет независимость закона относительно временных рамок, иных основополагающих принципов механики. Ньютоновская теория характеризуется использованием частного случая закона сохранения энергии.

Как можно качественно описать данный закон? Сумма потенциальной и кинетической форм в замкнутой системе сохраняется неизменной.

Если на систему не действуют иные силы, в таком случае не наблюдается ее исчезновения, а также появления. Как осуществлялось обоснование закона сохранения механической энергии? Лабораторная деятельность многих ученых основывалась на изучении перехода кинетической энергии в потенциальный вид. Например, при анализе состояния математического маятника удалось подтвердить неизменность суммарного значения двух видов.

Основы термодинамики

Как рассчитывается механическая энергия? Закон сохранения механической энергии можно применить к первому началу термодинамики. Рассматривается изменение внутренней энергии системы в процессе ее перехода из одного состояния в иное через сумму количества теплоты, передаваемого системе, и работы внешних сил.

Закон сохранения импульса и механической энергии поясняет сложность получения двигателя, работающего постоянно.

Изучение свойств жидкостей

Для гидродинамики идеальных жидкостей было выведено уравнение Бернулли. Суть его в постоянстве жидкости, имеющей однородную плотность.

Как изучалась механическая энергия? Закон сохранения механической энергии был определен экспериментальным путем. Гей-Люссак в начале 19 века пытался найти зависимость между расширением газа и его теплоемкостью. Ему удалось установить неизменность температуры в рассматриваемом процессе.

История появления закона

В 19 веке, после опытов М. Фарадея, была выявлена зависимость между разными видами материи. Именно эти исследования стали основой для появления закона сохранения. Что такое полная механическая энергия? Закон сохранения энергии назван результатом опытов, проведенных французским физиком Сади Карно. Он пытался экспериментальным путем определить зависимость между работой, совершенной над системой, и выделяющимся количеством теплоты.

Именно Карно удалось установить зависимость между теплом и работой, то есть сформулировать первое начало термодинамики на основе закона сохранения. Джеймс Прескотт Джоуль провел серию классических опытов, направленных на количественное определение теплоты, выделяющейся при вращении в электромагнитном поле соленоида с металлическим сердечником.

Ему удалось установить, что количество теплоты, выделяемой в экспериментах, прямо пропорционально значению тока, взятому в квадрате. В последующих экспериментах Джоуль поменял катушку на груз, падающий с некоторой высоты. Ученому удалось установить зависимость между величиной выделяемого тепла и математическим показателем энергии груза.

Роберт Майер предложил интересную гипотезу универсального применения закона сохранения энергии. Занимаясь изучением функционирования систем человека, немецкий врач решил проанализировать то количество теплоты, которое организм выделяет по мере переработки пищи. Его интересовала величина работы, совершаемой в этом случае. Майеру удалось установить связь между теплом, работой, подтверждающую возможность использования закона сохранения энергии для процессов, происходящих внутри организма человека.

Герман Гельмгольц дал первую характеристику потенциальной энергии, основываясь на исследованиях Джоуля и Майера. Он в своих рассуждениях базировался на связи кинетической (живой) энергии с силами напряжения (потенциальной энергии).

Заключение

Закон, поясняющий неизменность суммарного показателя нескольких видов энергии, присущих для рассматриваемой системы, сохраняет свою актуальность и в настоящее время. Открытие закона способствовало развитию физических наук, стало отправной точкой для инновационных процессов, рассматриваемых в науке и технике. Именно изучение закона сохранения механической энергии, лабораторная практика стали детальным обоснованием единства живой природы.

Он указывает на закономерность перехода одной формы в другую, раскрывает глубину внутренних связей между формами материи. Любое явление, происходящее в живой и неживой природе, легко можно объяснить с помощью данного закона. В школьной программе уделяется особое внимание выводу математической записи связи между разными видами движения, рассматриваются основы термодинамической системы. На едином государственном экзамене по физике предлагаются задачи, предполагающие использование данного соотношения.

Процессы, которые происходят в Солнечной системе, связанные с изменением положения тел за определенный промежуток времени, могут быть объяснены с точки зрения основных физических правил. Переход из кинетической в потенциальную форму актуален при изучении механического движения тел. Зная, что суммарный показатель будет постоянным, можно проводить математические вычисления.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна разности потенциальной энергии:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно:

или . (5.16)

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Сумма E = E k + E p есть полная механическая энергия. Получили закон сохранения полной механической энергии :

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы - закон сохранения и превращения энергии.

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона . Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия - абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

1.7. ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Формулировка закона сохранения механической энергии. Формулировка в случае наличия диссипативных сил. Графическое представление энергии. Финитное и инфинитное движения. Абсолютно упругий удар. Абсолютно неупругий удар.

Полная механическая энергия системы - энергия механического движения и взаимодействия, т.е. равна сумме кинетической и потенциальной энергий. Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы полная механическая энергия сохраняется, т.е. не изменяется со временем. Это -фундаментальный закон природы. Он является следствием однородности времени - инвариантности физических законов относительно выбора начала отсчета времени. Все силы в механике принято разделять на консервативные и неконсервативные . Консервативными называются силы, работа которых не зависит от формы траектории (пути) между двумя точками, а зависит только от начального и конечного положений тела относительно другого. Иначе говоря, работа консервативных сил по замкнутой траектории равна нулю. Примером консервативных сил являются сила тяжести, сила упругости и т.д. К ним, прежде всего, относятся диссипативные силы (преобразующие механическую энергию в другие виды энергии), например, сила трения. Если есть изменение, то равна работе диссипативных сил. Финитное – движение точек в ограниченной области пространства. Инфинитное – тело уходит на бесконечность. Абсолютно упругий удар - столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию. законы сохранения импульса и сохранения механической энергии выполняются . Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое тело. Не выполняется закон сохранения механической энергии: вследствие деформации часть кинетической энергии переходит во внутреннюю энергию тел (разогрев).

Введем понятие полной механической энергии частицы. Приращение кинетической энергии частицы равно элементарной работе результирующей всех сил, действующих на частицу. Если частица находится в потенциальном поле, то на нее действует консервативная сила со стороны этого потенциального поля. Кроме того, на частицу могут действовать и другие силы, имеющие иное происхождение. Назовем их сторонними силами .

Таким образом, результирующая всех сил, действующих на частицу, может быть представлена в виде . Работа всех этих сил идет на приращение кинетической энергии частицы:

Согласно (6.7), работа сил поля равна убыли потенциальной энергии частицы, т. е. . Подставив это выражение в предыдущее и перенеся член влево, получим

Отсюда видно, что работа сторонних сил идет на приращениe величины . Эту величину - сумму кинетичеcкой и потенциальной энергии - называют полной механической энергией частицы в поле :

на конечном перемещении из точки 1 в точку 2

(7 .3)

т.е . приращение полной механической энергии частицы на некотором пути равно алгебраической сумме работ всех сторонних сил , действующих на частицу на том же пути. Если , то полная механическая энергия частицы увеличивается, если же , то уменьшается.

Полная механическая энергия частицы может измениться под действием только сторонних сил. Отсюда непосредственно вытекает закон сохранения полной механической энергии частицы во внешнем поле: если сторонние силы отсутствуют или таковы, что алгебраическая сумма их мощностей равна нулю в течение интересующего нас времени, то полная механическая энергия частицы остается постоянной за это время . Иначе говоря,

(7 .4)

Уже в такой простейшей форме данный закон сохранения позволяет достаточно легко получать ответы на ряд важных вопросов без привлечения уравнений движения, что, как мы знаем, часто сопряжено с проведением громоздких и утомительных расчетов. Именно это обстоятельство и превращает законы сохранения в весьма действенный инструмент исследования.

Проиллюстрируем возможности и преимущества, которые дает применение закона сохранения (7.4), на следующем примере.

Пример. Пусть частица движется в одномерном потенциальном поле U (х. Если сторонние силы отсутствуют, то полная механическая энергия частицы в данном поле, т. е. Е, не меняется в процессе движения, и мы можем просто решить, например, такие вопросы, как:

1. Определить, не решая основного уравнения динамики, v (х) - скорость частицы в зависимости от ее координаты. Для этого достаточно знать, согласно уравнению (7.4) , конкретный вид потенциальной кривой U (х) и значение полной энергии Е (правая часть данного уравнения).

2. Установить область изменения координаты х частицы, в которой она может находиться при заданном значении полной энергии Е. Ясно, что в область, где U > Е, частица попасть не может, поскольку потенциальная энергия U частицы не может превышать ее полную энергию. Отсюда сразу следует, что при (рис. 7.1) частица может двигаться в области

между координатами (совершает колебания) или правее координаты . Перейти же из первой области во вторую (или обратно) частица не может: этому препятствует потенциальный барьер, разделяющий обе эти области. Заметим, что когда частица движется в ограниченной области поля, говорят, что она находится в потенциальной яме, в нашем случае - между .

Иначе ведет себя частица при (рис. 7.1): для нее доступна вся область правее . Если в начальный момент частица находилась в точке , то в дальнейшем она будет двигаться вправо. Определение изменения кинетической энергия частицы в зависимости от ее положения х может послужить полезным самостоятельным упражнением.

До сих пор мы ограничивались рассмотрением поведения одной частицы с энергетической точки зрения. Теперь перейдем к системе частиц. Это может быть любое тело, газ, любой механизм, Солнечная система и т. д.

В общем случае частицы системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. Систему частиц, на которую не действуют никакие посторонние тела или их воздействие пренебрежимо мало, называют замкнутой или изолированной. Понятие замкнутой системы является естественным обобщением понятия изолированной материальной точки и играет важную роль в физике.

Введем понятие потенциальной энергии системы частиц. Рассмотрим замкнутую систему, между частицами которой действуют только центральные силы, т. е. силы, зависящие при данном характере взаимодействия только от расстояния между ними и направленные по прямой, их соединяющей.

Покажем, что в любой системе отсчета работа всех этих сил при переходе системы частиц из одного положения в другое может быть представлена как убыль некоторой функции, зависящей при данном характере взаимодействия только от конфигурации самой системы или от относительного расположения ее частиц. Эту функцию назовем собственной потенциальной энергией системы, в отличие от внешней потенциальной энергии, характеризующей взаимодействие данной системы с другими телами.

Первоначально рассмотрим систему из двух частиц. Вычислим элементарную работу сил, с которыми эти частицы взаимодействуют между собой. Пусть в произвольной системе отсчета в некоторый момент времени положение частиц определяется радиус-векторами и . Если за время dt частицы совершили перемещения и соответственно, то работа сил взаимодействия и равна

Теперь учтем, что, согласно третьему закону Ньютона , поэтому предыдущее выражение можно переписать так:

Введем вектор , характеризующий положение 1-й частицы относительно 2-й. Тогда и после подстановки в выражение для работы получим

.

Сила - центральная, поэтому работа этой силы равна убыли потенциальной энергии взаимодействия данной пары частиц, т. е.

Так как функция зависит только от расстояния между частицами, то ясно, что работа не зависит от выбора системы отсчета.

Теперь рассмотрим систему из трех частиц, так как полученный в этом случае результат легко обобщить и на систему из произвольного числа частиц. Элементарная работа, которую совершают все силы взаимодействия при элементарном перемещении всех частиц, может быть представлена как сумма элементарных работ всех трех пар взаимодействий, т. е.

Но для каждой пары взаимодействий, как было показано , поэтому

где функция есть собственная потенциальная энергия данной системы частиц:

Так как каждое слагаемое этой суммы зависит от расстояния между соответствующими частицами, то очевидно, что собственная потенциальная энергия U данной системы зависит от относительного расположения частиц в один и тот же момент времени, или, другими словами, от конфигурации системы.

Подобные рассуждения справедливы и для системы из любого числа частиц. Поэтому можно утверждать, что каждой конфигурации произвольной системы частиц присуща своя собственная потенциальная энергия U , и работа всех центральных внутренних сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы, т. е.

(7 .5)

а при конечном перемещении всех частиц системы

(7 .6)

где и -значения потенциальной энергии системы в начальном и конечном состояниях.

Собственная потенциальная энергия системы U - величина неаддитивная, т. е. она не равна в общем случае сумме собственных потенциальных энергий ее частей. Необходимо учесть еще потенциальную энергию взаимодействия отдельных частей системы

,

(7 .7)

где - собственная потенциальная энергия части системы.

Следует также иметь в виду, что собственная потенциальная энергия системы, как и потенциальная энергия взаимодействия каждой пары частиц, определяется с точностью до прибавления произвольной постоянной, которая, впрочем, и здесь совершенно несущественна.

В заключение приведем полезные формулы для расчета собственной потенциальной энергии системы. Прежде всего покажем, что эта энергия может быть представлена как.

(7 .8)

где - потенциальная энергия взаимодействия частицы со всеми остальными частицами системы. Здесь сумма берется по всем частицам системы. Убедимся в справедливости этой формулы сначала для системы из трех частиц. Выше было показано, что собственная потенциальная энергия данной системы Преобразуем эту сумму следующим образом. Представим каждое слагаемое в симметричном виде: , ибо ясно, что . Тогда

Сгруппируем члены с одинаковым первым индексом:

Каждая сумма в круглых скобках представляет собой потенциальную энергию взаимодействия частицы с остальными двумя. Поэтому последнее выражение можно переписать так:

что полностью соответствует формуле (7.8).

Обобщение полученного результата на произвольную систему очевидно, ибо ясно, что подобные рассуждения совершенно не зависят от числа частиц, составляющих систему.

Для системы, взаимодействие между частицами которой носит гравитационный или кулоновский характер, формулу (7.8) можно преобразовать и к другому виду, воспользовавшись понятием потенциала. Заменим в (7.8) потенциальную энергию частицы выражением , где - масса (заряд) частицы, а - потенциал, создаваемый всеми остальными частицами системы в точке нахождения частицы.

где -объемная плотность массы или заряда, -элемент объема. Здесь интегрирование проводится по всему объему, занимаемому массами или зарядами.

Проведем классификацию сил по их свойствам. Известно, что частицы рассматриваемой системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. В соответствии с этим силы взаимодействия между частицами системы называют внутренними , а силы, обусловленные действием других тел, не входящих в данную систему, - внешними. В неинерциальной системе отсчета к последним нужно относить и силы инерции.

Кроме того, все силы делят на потенциальные и непотенциальные . Потенциальными называют силы, зависящие при данном характере взаимодействия только от конфигурации механической системы. Работа этих сил, как было показано, равна убыли потенциальной энергии системы. К непотенциальным силам относятся так называемые диссипативные силы - это силы трения и сопротивления, а также энергетические силы, вызывающие увеличение механической энергии системы за счет других видов энергии (например, взрыв артиллерийского снаряда). Важной особенностью данных сил является то, что суммарная работа внутренних диссипативных сил рассматриваемой системы отрицательна, а энергетических сил - положительна, причем в любой системе отсчета. Докажем это для диссипативных сил.

Любая диссипативная сила может быть представлена в виде

(7 . 1 4)

где - скорость данного тела относительно другого тела (или среды), с которым оно взаимодействует; - положительный коэффициент, зависящий в общем случае от скорости . Сила всегда направлена противоположно вектору . В зависимости от выбора системы отсчета работа этой силы может быть как положительной, так и отрицательной. Суммарная же работа всех внутренних диссипативных сил - величина всегда отрицательная . Переходя к доказательству этого, отметим прежде всего, что внутренние диссипативные силы в данной системе будут встречаться попарно, причем в каждой паре, согласно третьему закону Ньютона, они одинаковы по модулю и противоположны по направлению. Найдем элементарную работу произвольной пары диссипативных сил взаимодействия между телами 1 и 2 в системе отсчета, где скорости этих тел в данный момент равны :

Теперь учтем, что - скорость тела 1 относительно тела 2 , а также то, что . Тогда выражение для работы преобразуется так:

Отсюда видно, что работа произвольной пары внутренних диссипативных сил взаимодействия всегда отрицательна, а значит и суммарная работа всех пар внутренних диссипативных сил также всегда отрицательна. Таким образом, действительно,

(7 . 1 5)

Теперь можно сформулировать закон сохранения полной механической энергии системы частиц. Выше было показано, что приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы. Разделив эти силы на внешние и внутренние, а внутренние, в свою очередь,- на потенциальные и непотенциальные, запишем предыдущее утверждение так:

Теперь учтем, что работа внутренних потенциальных сил равна убыли собственной потенциальной энергии системы, т.е.

Тогда предыдущее выражение примет вид

Очевидно, энергия Е зависит от скоростей частицы системы, характера взаимодействия между ними и конфигурации системы. Кроме того, энергия Е, как и потенциальная энергия U , определяется с точностью до прибавления несущественной произвольной постоянной и является величиной неаддитивной , т. е. энергия Е системы не равна в общем случае сумме энергий ее отдельных частей. В соответствии c (7.7)

(7 . 1 8)

где - механическая энергия части системы, - потенциальная энергия взаимодействия ее отдельных частей.

Вернемся к формуле (7.16). Перепишем ее с учетом (7.17) в виде



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!