Косметология. Прически и макияж. Маникюр и педикюр. Фитнес

Закон физики о сохранении энергии. Закон сохранения энергии

Механическую, ядерную, электромагнитную, и т.д. Однако пока будем рассматривать только одну ее форму - механическую. Тем более что с точки зрения истории развития физики, она начиналась с изучения сил и работы. На одном из этапов становления науки был открыт закон сохранения энергии.

При рассмотрении механических явлений используют понятия кинетической и Экспериментально установлено, что энергия не исчезает бесследно, из одного вида она превращается в другой. Можно считать, что сказанное в самом общем виде формулирует закон сохранения

Сначала надо отметить, что в сумме потенциальная и тела называются механической энергией. Далее необходимо иметь в виду, что закон сохранения справедлив при отсутствии внешнего воздействия и дополнительных потерь, вызванных, например, преодолением сил сопротивления. Если какое-то из этих требований нарушено, то при изменении энергии будут происходить ее потери.

Самый простой эксперимент, подтверждающий указанные граничные условия, каждый может провести самостоятельно. Поднимите мячик на высоту и отпустите его. Ударившись об пол, он подскочит и потом опять упадет на пол, и опять подскочит. Но с каждым разом высота его подъема будет меньше и меньше, пока мяч не замрет неподвижно на полу.

Что мы видим в этом опыте? Когда мяч неподвижен и находится на высоте, он обладает только потенциальной энергией. Когда начинается падение, у него появляется скорость, и значит, появляется кинетическая энергия. Но по мере падения высота, с которой началось движение, становится меньше и, соответственно, становится меньше его потенциальная энергия, т.е. она превращается в кинетическую. Если провести расчёты, то выяснится, что значения энергии равны, а это означает, что закон сохранения энергии при таких условиях выполняется.

Однако в подобном примере есть нарушения двух ранее установленных условий. Мяч движется в окружении воздуха и испытывает сопротивление с его стороны, пусть и небольшое. И энергия затрачивается на преодоление сопротивления. Кроме того, мяч сталкивается с полом и отскакивает, т.е. он испытывает внешнее воздействие, а это второе нарушение граничных условий, которые необходимы, чтобы закон сохранения энергии был справедлив.

В конце концов скачки мяча прекратятся, и он остановится. Вся имеющаяся первоначальная энергия окажется потраченной на преодоление сопротивления воздуха и внешнего воздействия. Однако кроме превращения энергии окажется выполненной работа по преодолению сил трения. Это приведёт к нагреванию самого тела. Зачастую величина нагрева не очень значительная, и ее можно определить только при измерении точными приборами, но подобное изменение температуры существует.

Кроме механической, есть и другие виды энергии - световая, электромагнитная, химическая. Однако для всех разновидностей энергии справедливо, что из одного вида возможен переход в другой, и что при таких превращениях суммарная энергия всех видов остаётся постоянной. Это является подтверждением всеобщего характера сохранения энергии.

Здесь надо учесть, что переход энергии может означать и её бесполезную потерю. При механических явлениях свидетельством этого будет нагрев окружающей среды или взаимодействующих поверхностей.

Таким образом, простейшее механическое явление позволило нам определить закон сохранения энергии и граничные условия, обеспечивающие его выполнение. Была установлено, что осуществляется преобразование энергии из имеющегося вида в любой другой, и выявлен всеобщий характер упомянутого закона.

Звучит следующим образом —

НИЧТО НЕ ВОЗНИКАЕТ НИОТКУДА И НЕ ИСЧЕЗАЕТ В НИКУДА.

Фраза всем знакомая ещё из средней школы из уроков физики, там всем нам подробно рассказывали, как происходит векторное взаимодействие энергий, как они компенсируются и так далее.

Для нашего с вами практического применения надо этот закон сформулировать немного по-другому:

если вы хотите, чтобы у вас что-то появилось , то, сначала надо отдать некоторое количество энергии из себя, а затем получить взамен то, что соответствует количеству и качеству отданной вами энергии.

Если вы вдруг захотели, чтобы вас понимали и хорошо к вам относились, надо сначала самому начать понимать и хорошо относиться к другим, и лишь затем у вас появляется шанс получить желаемое отношение.

Это схема в чистом виде, естественно немного упрощена. Но понимание причин надо начинать именно с таких простых, утрированных примеров, а уж затем переходить к более сложным.

Продолжаем рассматривать простые примеры. Хотим получить деньги , тема актуальная. Что надо сделать? Провести определённую работу, затратить силы, знание, время, и получить заслуженную денежную компенсацию. Всё просто и понятно.

Просто так никому ничего не даётся

В жизни — так почему-то не получается. Почему? Большинство людей хотят поменьше работать и получать побольше. Замечательное желание, если у вас правильно выбрана профессия и вы продолжаете в ней развиваться и совершенствоваться. Если это пытаться реализовать другими способами , что-то похитрее провернуть, где-то обмануть — результат может получиться, но, через некоторое время, всё равно придется затратить дополнительное количество энергии за незаслуженный результат, плюс, разбираться с дополнительными процессами, которые будут требовать обязательной компенсации.

И чем больше величина полученных денег, тем больше размер необходимой энергии которую вы будете вынуждены затратить. И тут говорить об управлении процессом очень даже сложно. Когда идет нарушение закона, вы не выбираете то, как и где вы будете затрачивать энергию, процессы запущенные ранее будут сами требовать от вас затрат, они возникают без вашего желания и контроля , и кроме головной боли и колоссальных временных затрат не приносят ничего.

Самый простой пример с лотереями. Если есть желание, посмотрите на судьбы людей, которые получили крупные выигрыши в различных лотереях. Есть даже документальные фильмы по этому поводу.

Что происходит с человеком? Вдруг, совершенно неожиданно, не затратив ничего, кроме несколько рублей или долларов за билет, человек получает значительную сумму с шестью и более нулями.

Работу он произвел? Продукт он создал? Пользу он кому-нибудь принёс? Он не сделал ничего полезного и значимого для этого мира. А энергии в виде денежных знаков получил очень даже немало. Что с ним происходит дальше, вы наверное уже догадываетесь. Он начинает за это платить . И тут не придётся выбирать как и кому, ситуации начинают возникать одна за другой, не давая времени на передышку и минимальный анализ. Человек становится полностью зависим от этих денег, и жизнь быстренько превращается в один сплошной кошмар из непредсказуемых событий.

И чем заканчивают большинство таких «счастливчиков» вы, наверное, догадываетесь.

А тему лотерей продолжают раскручивать и рекламировать сами организаторы, им это выгодно, они получают хороший доход от таких желающих легких денег. И, что интересно, они становятся своего рода «санитарами леса» , залавливая тех, кто не хочет думать, тех кто любит сладкое слово «халява».

Дальше мы ещё рассмотрим много примеров применения этого закона, а пока постарайтесь на самых простых примерах отследить то, как он работает, и постепенно приступайте к корректировке своих процессов, надо когда-то начинать.

Другой пример — поиск «второй половинки» для строительства семьи. Задача не из простых, если не знать Универсальные Законы.

Что получается в обычной ситуации? Человек ищет того, кто его полюбит . Пообщался с одним объектом, вроде не любит, со вторым, та же история, где же найти того, кто сможет тебя любить?

А начинать-то надо с себя. Если ты умеешь любить , то у тебя все шансы встретить такого же человека, умеющего или желающего научиться любить. А если ты дожидаешься, пока тебя полюбят, не прилагая к этому никаких усилий, в плане собственного развития, то и шансы-то минимальны.

ПОДОБНОЕ ПРИТЯГИВАЕТ ПОДОБНОЕ

— это один из аспектов Универсального Закона Сохранения Энергии.

Схема-то проста: сначала продумать то, что такое любовь , затем приступить к реализации устойчивого умения любить, и, через определённый промежуток времени, подтянется такой же желающий научиться, но противоположного пола, вот и приступайте к строительству семейства.

Это, как обычно, не озвучивают в широких кругах, поэтому и семей удачных можно по пальцам пересчитать. Даже разделение придумали — либо по любви, либо по расчёту. А тут не надо разделять, надо делать семью и по любви и по расчёту , тогда все шансы на успех, половинными мерами тут обойтись не получится.

В общем случае тело обладает одновременно как кинетической, так и потенциальной энергией. Их сумму называют полной механической энергией :

E = E к + E п (15.1)

Это понятие было введено в 1847 г. 26-летним немецким ученым Г. Гельмгольцем.

Что происходит с полной механической энергией по мере движения тела? Чтобы выяснить это, рассмотрим простое явление.

Бросим вертикально вверх мяч. Придав мячу скорость, мы тем самым сообщим ему некоторую кинетическую энергию. По мере движения мяча вверх его движение будет замедляться притяжением Земли и скорость, а вместе с ней и кинетическая энергия мяча будут становиться все меньше и меньше. Потенциальная же энергия мяча вместе с высотой h будет при этом возрастать. В высшей точке траектории (на максимальной высоте) потенциальная энергия мяча достигнет своего наибольшего значения, а кинетическая энергия окажется равной нулю. После этого мяч начнет падать вниз, постепенно набирая скорость. Кинетическая энергия при этом начнет увеличиваться, а потенциальная энергия (из-за уменьшения высоты) - убывать. В момент удара о землю кинетическая энергия мяча достигнет максимального значения, а потенциальная энергия обратится в нуль.

Итак, когда кинетическая энергия тела уменьшается, потенциальная энергия возрастает, и наоборот, когда кинетическая энергия тела увеличивается, его потенциальная энергия убывает. Изучение свободного падения тела (в отсутствие сопротивления воздуха) показывает, что всякое уменьшение одного из этих видов энергии сопровождается равным увеличением другого вида энергии. Полная же механическая энергия тела при этом сохраняется. В этом состоит закон сохранения механической энергии :

Полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной.

Если обозначить начальную и конечную энергии тела через E и E", то закон сохранения энергии можно выразить в виде следующего равенства:

Предположим, что свободно движущееся тело в начальный момент времени находилось на высоте h0 и имело при этом скорость v0. Тогда его полная механическая энергия в этот момент времени была равна

Если спустя некоторое время рассматриваемое тело окажется на высоте h, имея скорость v (рис. 28), то его полная механическая энергия станет равной

Согласно закону сохранения энергии, оба эти значения энергии должны совпадать. Поэтому

Если начальные значения h0 и v0 известны, то это уравнение позволяет найти скорость тела v на высоте h или, наоборот, высоту h, на которой тело будет иметь заданную скорость v. Масса тела при этом никакой роли играть не будет, так как в уравнении (15.5) она сокращается.


Следует помнить, что полная механическая энергия сохраняется лишь тогда, когда отсутствуют силы трения и сопротивления. Если же эти силы присутствуют, то их действие приводит к уменьшению механической энергии.

1. Что называют полной механической энергией? 2. Сформулируйте закон сохранения механической энергии. 3. С какой энергией - кинетической или потенциальной - совпадает полная механическая энергия свободно падающего тела в момент удара о землю? 4. С какой энергией совпадает полная механическая энергия брошенного вертикально вверх мяча в момент, когда он оказывается в высшей точке своего полета? 5. Что происходит с полной механической энергией тела при наличии сил трения и сопротивления?

Полная механическая энергия замкнутой системы тел остается неизменной


Закон сохранения энергии можно представить в виде

Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

Рассмотрим свободное падение тела с некоторой высоты h1 . Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.


В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

Состояние 3 - это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

Главное запомнить

1) Суть закона сохранения энергии

Общая форма закона сохранения и превращения энергии имеет вид

Изучая тепловые процессы, мы будем рассматривать формулу
При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

Лекция 3. Работа и энергия. Законы сохранения энергии и импульса

Гл.2-3, §9-11

План лекции

    Работа и мощность

    Закон сохранения импульса.

    Энергия. Потенциальная и кинетическая энергии. Закон сохранения энергии.

    Работа и мощность

Когда под действием некоторой силы тело совершает перемещение, то действие силы характеризуется величиной, которая называется механической работой.

Механическая работа - мера действия силы, в результате которого тела совершают перемещение.

Работа постоянной силы. Если тело движется прямолинейно под действием постоянной силы , составляющей некоторый угол с направлением перемещения (рис.1), работа равна произведению этой силы на перемещение точки приложения силы и на косинус угла между векторами и; или работа равна скалярному произведению вектора силы на вектор перемещения:


Работа переменной силы. Чтобы найти работу переменной силы, пройденный путь разбивают на большое число малых участков так, чтобы их можно было считать прямолинейными, а действующую в любой точке данного участка силу - постоянной.

Элементарная работа (т.е. работа на элементарном участке ) равна , а вся работа переменной силы на всем путиS находится интегрированием: .

В качестве примера работы переменной силы рассмотрим работу, совершаемую при деформации (растяжении) пружины, подчиняющейся закону Гука.

Если начальная деформация x 1 =0, то .

При сжатии пружины совершается такая же работа.

Графическое изображение работы (рис.3).

На графиках работа численно равна площади заштрихованных фигур.

Для характеристики быстроты совершения работы вводят понятие мощности.

Мощность постоянной силы численно равна работе, совершаемой этой силой за единицу времени.

1 Вт- это мощность силы, которая за 1 с совершает 1 Дж работы.

В случае переменной мощности (за малые одинаковые промежутки времени совершается различная работа) вводится понятие мгновенной мощности:

где
скорость точки приложения силы.

Т.о. мощность равна скалярному произведению силы на скоростьточки её приложения.

Т.к.

2. Закон сохранения импульса.

Механической системой называется совокупность тел, выделенная для рассмотрения. Тела, образующие механическую систему, могут взаимодействовать, как между собой, так и с телами, не принадлежащими данной системе. В соответствие с этим силы, действующие на тела системы, подразделяют на внутренние и внешние.

Внутренними называются силы, с которыми тела системы взаимодействуют между собой

Внешними называются силы, обусловленные воздействием тел, не принадлежащих данной системе.

Замкнутой (или изолированной) называется система тел, на которую не действуют внешние силы.

Для замкнутых систем оказываются неизменными (сохраняются) три физических величины: энергия, импульс и момент импульса. В соответствии с этим имеют место три закона сохранения: энергии, импульса, момента импульса.

Рассмотрим систему, состоящую из 3-х тел, импульсы которых
и на которые действуют внешние силы(рис. 4).Согласно 3 закону Ньютона, внутренние силы попарно равны и противоположно направлены:

Внутренние силы:

Запишем основное уравнение динамики для каждого из этих тел и сложим почленно эти уравнения

Для N тел:

.

Сумма импульсов тел, составляющих механическую систему, называется импульсом системы:

Т.о., производная по времени импульса механической системы равна геометрической сумме внешних сил, действующих на систему,

Для замкнутой системы
.

Закон сохранения импульса : импульс замкнутой системы материальных точек остается постоянным.

Из этого закона следует неизбежность отдачи при стрельбе из любого орудия. Пуля или снаряд в момент выстрела получают импульс, направленный в одну сторону, а винтовка или орудие получают импульс, направленный противоположно. Для уменьшения этого эффекта применяют специальные противооткатные устройства, в которых кинетическая энергия орудия превращается в потенциальную энергию упругой деформации и во внутреннюю энергию противооткатного устройства.

Закон сохранения импульса лежит в основе движения судов (подводных лодок) при помощи гребных колес и винтов, и водометных судовых двигателей (насос всасывает забортную воду и отбрасывает ее за корму). При этом некоторое количество воды отбрасывается назад, унося с собой определенный импульс, а судно приобретает такой же импульс, направленный вперед. Этот же закон лежит в основе реактивного движения.

Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. При таком ударе механическая энергия частично или полностью переходит во внутреннюю энергию соударяющихся тел, т.е. закон сохранения энергии не выполняется, выполняется только закон сохранения импульса.

,

Теория абсолютно упругих и абсолютно неупругих ударов используется в теоретической механике для расчета напряжений и деформаций, вызванных в телах ударными силами. При решении многих задач удара часто опираются на результаты разнообразных стендовых испытаний, анализируя и обобщая их. Теория удара широко используется при расчетах взрывных процессов; применяется в физике элементарных частиц при расчетах столкновений ядер, при захвате частиц ядрами и в других процессах.

Большой вклад в теорию удара внёс российский академик Я.Б.Зельдович, который, разрабатывая в 30-х годах физические основы баллистики ракет, решил сложную задачу удара тела, летевшего с большой скоростью по поверхности среды.

3.Энергия. Потенциальная и кинетическая энергия. Закон сохранения энергии.

Все введенные ранее величины характеризовали только механическое движение. Однако форм движения материи много, постоянно происходит переход от одной формы движения к другой. Необходимо ввести физическую величину, характеризующую движение материи во всех формах её существования, с помощью которой можно было бы количественно сравнивать различные формы движения материи.

Энергия - мера движения материи во всех её формах. Основное свойство всех видов энергии - взаимопревращаемость. Запас энергии, которой обладает тело, определяется той максимальной работой, которую тело может совершать, израсходовав свою энергию полностью. Энергия численно равна максимальной работе, которую тело может совершить, и измеряется в тех же единицах, что и работа. При переходе энергии из одного вида в другой нужно подсчитать энергию тела или системы до и после перехода и взять их разность. Эту разность принято называть работой:

.

Т. о., физическая величина, характеризующая способность тела совершать работу, называется энергией.

Механическая энергия тела может быть обусловлена либо движением тела с некоторой скоростью, либо нахождением тела в потенциальном поле сил.

Кинетическая энергия.

Энергия, которой обладает тело вследствие своего движения, называется кинетической. Работа, совершенная над телом, равна приращению его кинетической энергии.

Найдем эту работу для случая, когда равнодействующая всех приложенных к телу сил равна .

Работа, совершенная телом за счет кинетической энергии, равна убыли этой энергии.

Потенциальная энергия.

Если в каждой точке пространства на тело воздействуют другие тела с силой, величина которой может быть различна в разных точках, говорят, что тело находится в поле сил или силовом поле.

Если линии действия всех этих сил проходит через одну точку - силовой центр поля, - а величина силы зависит только от расстояния до этого центра, то такие силы называются центральными, а поле таких сил - центральным (гравитационное, электрическое поле точечного заряда).

Поле постоянных во времени сил называется стационарным.

Поле, в котором линии действия сил - параллельные прямые, расположенные на одинаковом расстоянии друг от друга - однородное.

Все силы в механике подразделяются на консервативные и неконсервативные (или диссипативные).

Силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положением тела в пространстве, называются консервативными.

Работа консервативных сил по замкнутому пути равна нулю. Все центральные силы являются консервативными. Силы упругой деформации также являются консервативными силами. Если в поле действуют только консервативные силы, поле называется потенциальными (гравитационные поля).

Силы, работа которых зависит от формы пути, называются неконсервативными (силы трения).

Потенциальной энергией называют часть общей механической энергии системы, которая определяется только взаимным расположением тел, составляющих систему, и характером сил взаимодействия между ними. Потенциальная энергия - это энергия, которой обладают тела или части тела вследствие их взаимного расположения.

Понятие потенциальной энергии вводится следующим образом. Если тело находится в потенциальном поле сил (например, в гравитационном поле Земли), каждой точке поля можно сопоставить некоторую функцию (называемую потенциальной энергией) так, чтобы работа А 12 , совершаемая над телом силами поля при его перемещении из произвольного положения 1 в другое произвольное положение 2, была равна убыли этой функции на пути 12:

,

где
и
значения потенциальной энергии системы в положениях 1 и 2.

Записанное соотношение позволяет определить значение потенциальной энергии с точностью до некоторой неизвестной аддитивной постоянной. Однако, это обстоятельство не имеет никакого значения, т.к. во все соотношения входит только разность потенциальных энергий, соответствующих двум положениям тела. В каждой конкретной задаче уславливаются считать потенциальную энергию какого-то определенного положения тела равной нулю, а энергию других положений брать по отношению к нулевому уровню. Конкретный вид функциизависит от характера силового поля и выбора нулевого уровня. Поскольку нулевой уровень выбирается произвольно,может иметь отрицательные значения. Например, если принять за нуль потенциальную энергию тела, находящегося на поверхности Земли, то в поле сил тяжести вблизи земной поверхности потенциальная энергия тела массойm, поднятого на высоту h над поверхностью, равна
(рис. 5).

где
- перемещение тела под действием силы тяжести;

при
,
,

Потенциальная энергия этого же тела, лежащего на дне ямы глубиной H, равна

.

В рассмотренном примере речь шла о потенциальной энергии системы Земля-тело.

Потенциальной энергией может обладать не только система взаимодействующих тел, но отдельно взятое тело. В этом случае потенциальная энергия зависит от взаимного расположения частей тела.

Выразим потенциальную энергию упруго деформированного тела.

- потенциальная энергия упругой деформации, если принять, что потенциальная энергия недеформированного тела равна нулю;

где k - коэффициент упругости, x - деформация тела.

В общем случае тело одновременно может обладать и кинетической и потенциальной энергиями. Сумма этих энергий называется полной механической энергией тела:

Полная механическая энергия системы равна сумме её кинетической и потенциальной энергий. Полная энергия системы равна сумме всех видов энергии, которыми обладает система.

Закон сохранения энергии - результат обобщения многих экспериментальных данных. Идея этого закона принадлежит Ломоносову, изложившему закон сохранения материи и движения, а количественная формулировка дана немецким врачом Майером и естествоиспытателем Гельмгольцем.

Закон сохранения механической энергии : в поле только консервативных сил полная механическая энергия остается постоянной в изолированной системе тел. Наличие диссипативных сил (сил трения) приводит к диссипации (рассеянию) энергии, т.е. превращению её в другие виды энергии и нарушению закона сохранения механической энергии.

Закон сохранения и превращения полной энергии : полная энергия изолированной системы есть величина постоянная.

Энергия никогда не исчезает и не появляется вновь, а лишь превращается из одного вида в другой в эквивалентных количествах. В этом и заключается физическая сущность закона сохранения и превращения энергии: неуничтожимость материи и её движения.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!