Косметология. Прически и макияж. Маникюр и педикюр. Фитнес

Потенциальная энергия проводника. Энергия электрического поля

Согласно определению потенциала (12.17), энергию взаимодействия системы п неподвижных точечных зарядов (/ = 1 ,п) можно определить

где ф, - потенциал, создаваемый в той точке, где находится заряд, всеми зарядами, кроме /-го. Если заряд распределен в пространстве непрерывно с объемной плотностью р = р(г), то элемент объема dV будет иметь заряд dq - pdV. Тогда энергия системы определяется уравнением

|

где V - весь объем, занимаемый зарядом.

Определим энергию заряженного уединенного проводника произвольной формы, заряд, емкость и потенциал которого равны соответственно q, С, ф. Потенциал во всех точках уединенного проводника одинаков. Зная ф, найдем его энергию как

или, используя С = q/q> (формула (12.40)), найдем

Можно доказать, что электрическая энергия системы из п неподвижных заряженных проводников

где OjdS, поскольку в проводнике избыточные заряды распределе-

ны по его внешней поверхности, о, - поверхностная плотность сторонних зарядов на малом элементе поверхности /-го проводника площадью dS. Интегрирование проводится по всей эквипотенциальной внешней поверхности проводника площадью 5). Таким образом, формулу (13.26в) перепишем в виде

где Sj - поверхность заряженных проводников.

В общем случае электрическую энергию любой системы заряженных неподвижных тел - проводников и непроводников - можно найти по формуле

где ф - потенциал результирующего поля всех сторонних и связанных зарядов в точках малых элементов dS и dV заряженных поверхностей и объемов; аир- соответственно поверхностная и объемная плотности сторонних зарядов. Интегрирование проводится по всем заряженным поверхностям S и по всему заряженному объему Стел системы.

Согласно формуле (13.28), если заряд распределен непрерывно, то необходимо разбить заряд каждого тела на бесконечно малые элементы odS или рdV и каждый из них умножить на потенциал ф, создаваемый не только зарядами других объектов, но и элементами заряда этого тела.

Расчет по формуле (13.28) позволяет вычислить полную энергию взаимодействия, поскольку получаем величину, равную сумме энергий взаимодействия заряженных неподвижных тел и их собственных энергий.

Собственная энергия заряженного тела - это энергия взаимодействия друг с другом элементов данного заряженного тела.

Энергию W можно трактовать как потенциальную энергию системы заряженных тел, обусловленную кулоновскими силами их взаимодействия. Влияние среды на энергию системы при неизменном распределении сторонних зарядов таково, что значения потенциалов ф в разных диэлектриках различны. Например, в однородном, изотропном диэлектрике, заполняющем все поле, ф меньше, чем в вакууме, в? раз.

Из формулы (13.28) можно получить также формулу для электрической энергии конденсатора (р = 0):

где -S") и xSj - площади обкладок конденсатора; q = CU .

Изучение переменных электромагнитных полей (тема 20) показало, что они могут существовать отдельно от породивших их систем электрических зарядов и токов, а их распространение в пространстве в виде электромагнитных волн связано с переносом энергии. Так, было доказано, что электромагнитное поле обладает энергией. Соответственно и электростатическое поле обладает энергией, которая распределена в поле с объемной плотностью w e .

Объемная плотность энергии электростатического поля w e в случае однородных полей вычисляется по формуле

Для неоднородных полей справедливо выражение

где dW - энергия малого элемента dV объема поля, в пределах которого величину объемной плотности электростатического поля w e можно считать всюду одинаковой.

Единица объемной плотности энергии электрического поля в СИ - джоуль на метр в кубе (Дж/м 3).

Объемная плотность энергии электростатического поля в изотропной диэлектрической среде (или вакууме)

где D - электрическое смешение. Согласно уравнению (13.12а), D = ce 0 E .

Необходимо отметить, что формулы (13.25) - (13.28а) справедливы для потенциальных электростатических полей, т.е. полей неподвижных заряженных тел.

Для переменных непотенциальных электрических полей понятие потенциала и построенные на его основе выражения для энергии лишены смысла. Эти поля обладают энергией, которую можно найти, пользуясь универсальной формулой, справедливой как для однородного, так и для неоднородного поля:

где V - объем, занимаемый полем.

Энергия поляризованного диэлектрика. Как следует из формулы (13.31), объемная плотность энергии электростатического поля в вакууме

При той же напряженности Е поля в диэлектрической среде объемная плотность энергии поля в г раз больше, чем в вакууме:

Поэтому объемная плотность энергии и> диэл поляризованного диэлектрика определяется как

где Р = х? о^ - поляризованность диэлектрика; х - диэлектрическая восприимчивость диэлектрика.

Пондеромоторные силы. Пондеромоторные силы - это механические силы, которые действуют на заряженные тела, помещенные в электрическое поле. Под действием данных сил поляризованный диэлектрик деформируется - это явление называется электрострикцией. Причиной возникновения пондеромоторных сил является действие неоднородного электрического поля на дипольные молекулы поляризованного диэлектрика. Эти силы обусловлены неоднородностью макрополя, а также микрополя, создаваемого в основном ближайшими молекулами поляризованного диэлектрика.

Рассмотрим, например, заряженный плоский конденсатор (см. рис. 12.18), отключенный от источника (постоянные заряды на обкладках). Введем в него диэлектрик с диэлектрической проницаемостью z таким образом, чтобы между ним и пластинами конденсатора не было даже тонкого зазора (иначе силы электрострикции не передавались бы пластинам и сила взаимодействия между пластинами не менялась бы при введении диэлектрика). Под действием пондеромоторной силы обкладки конденсатора сжимают пластину диэлектрика, помещенного между ними, и в диэлектрике возникает давление.

Если расстояние между пластинами уменьшается на dx, то механическая работа

где F x - проекция силы притяжения F между пластинами конденсатора на положительное положение осиХ. Изменение энергии поля

где S - площадь поверхности обкладки конденсатора.

Согласно закону сохранения энергии, механическая работа сил электрического поля равна уменьшению его энергии. Тогда пондеромоторная сила (сила, действующая на единицу поверхности пластины)

т.е. будет равна объемной плотности энергии электрического поля.

Энергия заряженного проводника. Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды dq , одинаковы и равны потенциалу проводника. Заряд q , находящийся на проводнике, можно рассматривать как систему точечных зарядов dq . Тогда энергия заряженного проводника = Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд +q , равен , а потенциал обкладки, на которой находится заряд -q , равен . Энергия такой системы =

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает = = Oбъемная плотность энегии электрического поля равна C учетом соотношения D= можно записать ; Зная плотность энергии поля в каждой точке, можно найти энергию поля , заключенного в любом объеме V . Для этого нужно вычислить интеграл: W=

30. Электромагнитная индукция. Опыты Фарадея, правило Ленца, формула для ЭДС электромагнитной индукции, трактовка Максвелла явления электромагнитной индукции Явление электромагнитной индукции открыто М. Фарадеем.Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину Ф=B*S*cosaгде B(Вб)– модуль вектора магнитной индукции, α – угол между вектором B и нормалью n к плоскости контура. Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус: Эта формула носит название закона Фарадея. Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение называется правилом Ленца. Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.1)Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле В перпендикулярное плоскости контура. Пусть одна из сторон контура длиной L скользит со скоростью v по двум другим сторонам.На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью v зарядов, направлена вдоль проводника. Она играет роль сторонней силы. Ее модуль равен Fл=evB. Работа силы F Л на пути L равна A=Fл*L=evBL.По определению ЭДС. В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За время Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно, Для того, чтобы установить знак в формуле, нужно выбрать согласованные между собой по правилу правого буравчика направление нормали n и положительное направление обхода контура L Если это сделать, то легко прийти к формуле Фарадея.



Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный I инд = инд /R. За время Δt на сопротивлении R выделится джоулево тепло .Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера. модуль силы Ампера равен F A = I B l. Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа . Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение . Полная работа силы Лоренца равна нулю. Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не являетсяпотенциальным . Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 г.Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Электроемкость уединенного проводника

Уединенный проводник - проводник, который удален от других проводников, тел и зарядов.

Электроемкость уединенного проводника (заряд, сообщение которого проводнику изменяет его потенциал на единицу (измеряется в фарадах) Q - заряд, фи - потенциал проводника.)

Электроемкость шара.

Конденсаторы

Конденсаторы - устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах обладать большой емкостью. Конденсатор состоит на двух проводников (обкладок), разделенных диэлектриком. Конденсаторы делят на плоские (две плоские параллельные пластины одинаковой площади, расположенные на расстоянии d друг от друга), цилиндрические (два проводящих коаксиальных цилиндра) и сферические (два проводника, имеющие форму концентрических сфер).

Емкость конденсатора - физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов между его обкладками. - для плоского; - для сферического; - для цилиндрического.

Конденсаторы характеризуются пробивным напряжением - разностью потенциалов между обкладками конденсатора, при которой происходит пробой - электрический разряд через слой диэлектрика в конденсаторе.

Соединения конденсаторов: последовательное, параллельное и смешанное.

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

1. Энергия системы неподвижных точечных зарядов

2. Энергия заряженного уединенного проводника () - равна той работе, которую необходимо совершить, чтобы зарядить этот проводник

3. Энергия заряженного конденсатора ()

4. Энергия электростатического поля () V=Sd - объем конденсатора

Объемная плотность энергии электростатического поля

Электрический ток, сила и плотность тока рисунок конденсатора выше

Электрический ток - любое упорядоченное движение электрических зарядов. В проводнике возникает электрический ток, называемый током проводимости. Для возникновения и существования электрического тока необходимо наличие свободных носителей тока - заряженных частиц,

способных перемещаться упорядоченно, и наличие электрического поля, энергия которого расходовалась бы на их упорядоченное движение.

Сила тока I - скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени, измеряется в амперах. Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

Заряд q , находящийся на некотором проводнике, можно рассматривать как систему точечных зарядов q. Ранее мы получили (3.7.1) выражение для энергии взаимодействия системы точечных зарядов:

Поверхность проводника является эквипотенциальной. Поэтому потенциалы тех точек, в которых находятся точечные заряды q i , одинаковы и равны потенциалу j проводника. Воспользовавшись формулой (3.7.10) получим для энергии заряженного проводника выражение:

. (3.7.11)

Любое, из ниже приведенных формул (3.7.12) дает энергию заряженного проводника:

. (3.7.12)

Итак, логично поставить вопрос: где же локализована энергия, что является носителем энергии- заряды или поле? В пределах электростатики, которая изучает постоянные по времени поля неподвижных зарядов, дать ответ невозможно. Постоянные поля и обусловившие их заряды не могут существовать обособленно друг от друга. Однако меняющиеся во времени поля, могут существовать независимо от возбудивших их зарядов и распространяться в виде электромагнитных волн. Опыт показывает, что электромагнитные волны переносят энергию. Эти факты заставляют признать, что носителем энергии является поле.

Литература:

Осн. 2 , 7 , 8 .

Доп. 22 .

Контрольные вопросы:

1. При каких условиях силы взаимодействия двух заряженных тел можно найти по закону Кулона?

2. Чему равен поток напряженности электростатического поля в вакууме через замкнутую поверхность?

3. Расчет каких электростатических полей удобно производить на основе теоремы Остроградского-Гаусса?

4. Что можно сказать о напряженности и потенциале электростатического поля внутри и у поверхности проводника?

Энергия заряженного проводника численно равна работе, которую должны со­вершить внешние силы для его зарядки W=A. При перенесении заряда dq из бесконечности на проводник совершается ра­бота dA против сил электростатического поля (по преодолению кулоновских сил отталки­вания между одноименными зарядами) : dA=jdq=Cjdj.

Чтобы зарядить тело от нулевого потенциала до потенциала j, потребуется ра­бота . Энергия заряженного проводника равна той работе, которую надо совершить, чтобы зарядить его: .

Выражение принято называть собственной энергией заряженного про­водника .

Увеличение потенциала j проводника при его зарядке сопровождается усиле­нием электростатического поля, возрастает напряженность поля . Естественно предположить, что собственная энергия заряженного проводника есть энергия его электростатического поля. Проверим это предположение на примере однородного поля плоского конденсатора. Повторяя ход вышеприведенного расчета, нетрудно получить энергию заряженного плоского конденсатора ,

где Dj - разность потенциалов его обкладок. Подставим в эту формулу выражения для емкости плоского конденсатора и разности потенциалов между обкладками . Тогда для энергии получим , где V=Sd - объем электростатического поля между обкладками конденсатора.

Отсюда следует, что собственная энергия заряженного плоского конденсатора пропорциональна V объему его поля и на­пря­женности . Следовательно, необходимо считать, что электростатическое поле обладает энергией. Объемная плотность энергии электрического поля или энергия единицы объема равна , . Где же локализована энергия электростатического поля и что является ее но­си­телем - заряды или само поле? Ответ на этот вопрос может дать только опыт. Од­нако электростатика не может ответить на данный вопрос, потому что она изучает посто­янные во времени поля неподвижных зарядов, т.е. в электростатике поля и за­ряды неотделимы друг от друга.

Опыты показали, что переменные во времени электрические поля могут суще­ствовать обособленно, независимо от возбудивших их зарядов. Они распространя­ют­ся в пространстве в виде волн, способных переносить энергию. Отсюда следует, что энергия локализована в поле и носителем электрической энергии является поле.



Понравилась статья? Поделитесь с друзьями!
Была ли эта статья полезной?
Да
Нет
Спасибо, за Ваш отзыв!
Что-то пошло не так и Ваш голос не был учтен.
Спасибо. Ваше сообщение отправлено
Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!